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Vision: What could next-gen 
subsurface “visualization” look like?

o Both regional & site-specific 

o Updated in real time

o Provides automated anomaly 
detection

o Provides interface for rapid 
scenario exploration

Modified 2017 USGS Oklahoma Hazard Map, for 
illustration purposes only

Amber Warning:
High probability of felt earthquakes.

Consider reducing injection at:
Well F-2L-56 (confidence 95%)
Well F-2L-55 (confidence 50%)

Click here to model response options.



Task 3: Imaging Pressure and Stress

Ten-year vision will require three enabling technologies:

1. Rapid and autonomous geophysical monitoring

2. Real-time modeling and data assimilation tools

3. Visualization and decision-support frameworks



Enabling Technology 1: Rapid Geophysical Monitoring
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Passive Seismic Imaging
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POC: Chengping Chai

ML can provide better picks, locations, and tomography .... at orders of magnitude less cost. 



Active Seismic Imaging
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Petrophysical Imaging using Deep Learning
Jyoti Behura, CSM
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Petrophysical Imaging using Deep Learning
Jyoti Behura, CSM
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Seismic processing

Challenge: 

4D seismic processing is time-consuming and very expensive

Opportunity:

Use trained CNNs as a rapid seismic processor

POC: Jyoti Behura



Active Seismic Imaging
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Kimberlina Tests – Year 2
• Training done on time-lapse data from Year 0 and Year 1; Only 400 shot-gathers employed in training! Super-fast!

• Able to reasonably extract time-lapse pore-pressure and CO2 saturation for future monitor surveys

Ground Truth ML Result Di↵erence
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Note:
• No Year 2 data was

used in training

• Computationally

very e�cient

• Can operate with

sparse data

POC: Jyoti Behura

Methodology

o CNN trained using 400 shot-

gathers from year 0 and year 1 

seismic surveys

o Years 2 to 5 predicted



Active Seismic Imaging
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POC: Jyoti Behura

Could open up whole new imaging 

workflows:

o Use rapid NN for quick-look 

results while awaiting more time-

intensive processing

o Combining high-resolution and 

low-resolution surveys to lower 

monitoring costs
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Kimberlina Tests – Year 5
• Training done on time-lapse data from Year 0 and Year 1; Only 400 shot-gathers employed in training! Super-fast!

• Able to reasonably extract time-lapse pore-pressure and CO2 saturation for future monitor surveys

Ground Truth ML Result Di↵erence
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Note:
• No Year 5 data was

used in training

• Computationally

very e�cient

• Can operate with

sparse data



Enabling Technology 2: Real-Time Modeling & Data Assimilation

10

Site
Monitoring

Observation 
Database

Pr
oc

es
sin

g 
La

ye
r

Raw Data Data Products

Element 1: Automated Monitoring & Characterization

Element 2: Real-Time Modeling and Data-Assimilation

Integrated 
System Model

Observation 
Database

Simulation 
Ensemble

Reduced 
Model

History 
Matching

Property 
Ensemble

Element 3: Visualization and Decision-Support

Integrated 
System Model

Observation 
Database

Visualization 
Platform

Hazard 
Assessment

Scenario 
Exploration

Anomaly 
Detection

Reservoir Simulation Workflow Wrappers



Autonomous Inversion of Deformation Data
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POC: Jeff Burghardt

strain meters in injection 
and two monitoring wells

Challenge: 

Workflows for determining rock properties and 

state-of-stress are often slow and clunky.

Proposed Approach:
Combine NNs, a physics-based finite element 

model, and a gradient-based inversion 

algorithm to rapidly estimate elastic properties 

from sparse strain measurements.



12

model estimate

model parameter loss function gradient

true value

shallow
aquifer

cap
rock

reservoir

basement



Enabling Technology 3: Visualization & Decision Support
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Seismicity Hazard Forecasting & Operator Support
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POC: David Coblentz / Chris Sherman

Goals:

• Co-visualize relevant P-T-S data in 

real time

• Provide hazard estimates and

forecasting

• Think carefully about the human-

machine interface



Phase I Targets
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Phase II Goals
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Questions?
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Thank you!

Joshua White: jawhite@llnl.gov
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